National Institution of Food and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

Wireless Sensing for Monitoring and Control in Horticulture

George Kantor
CMU Robotics Institute

IFTA 25 February 2013

National Institute of Food and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

Wireless Sensor Network

Three primary components

saving water increasing efficiency reducing environmental impacts

- Nodes: Inexpensive devices that read from sensors and trasmit the data to a central basestation
- Sensors: Devices that sense the environment (e.g., soil moisture)
- Basestation: Used to configure nodes, and work with node sensor data

New nR5-Control Node: (Field tested during 2012)

- ✓ nR5 Node This wireless node allows us to both monitor sensors and control irrigation events, based on sensor readings
- ✓ Node measures data every minute and then logs the data at an interval specified by the user (1, 2, 5, 15, 30, 60 minutes etc.)
- Monitoring Mode: Batteries logging at 15 minutes typically last 12+ months
- Control mode: Batteries are lasting 4-6 months, depending on the # irrigations initiated per day.

Sensing

- Three types
 - Canopy Environment: Air temperature, RH, light, etc.
 - Root Environment: Water content, temperature, salt
 - Irrigation System Health: Flow meters, line pressure, in-tank EC

National Institute of Food and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

Environmental Sensors

(we work with the **Decagon** product line)

rainfall

leaf wetness

United States National Institute
Department of of Food
Agriculture and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

Root Zone Sensors

soil moisture

National Institute of Food and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

Irrigation System Sensors

line pressure

Flow meter

Viewing Data

- Web-based interface (accessible from anywhere)
- Instantaneous overview (red-yellow-green)
- Detailed time series plotting
- Grower tools (VPD, DLI, physiological models, etc.)

National Institute and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

Carnegie Mellon
THE ROBOTICS INSTITUTE

National Institute of Food and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

SCRI-MINDS — Managing Irrigation and Nutrition via Distributed Sensing saving water increasing efficiency reducing environmental impacts

United States National Institute
Department of Food
Agriculture and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

Alerts

- Configurable alerts can be sent via email or text message
- Alerts can be generated when a sensor value, irrigation, or growing tool; go above or below a value
- Alerts can also be used to send daily messages to the user. Such as total irrigation.

National Institute of Food and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

Solenoid Control in the Field

24 VAC solenoid

12 VDC latching solenoids

Sensorweb: Macro-Scheduling Tool

Allows for real-time monitoring and adjustment of irrigation events, for blocks of times during the day, using sensor-based or schedule-based control

Sensorweb: Micro-pulse Tool

Allows a "time-out" for sensors to measure between pulse events, reducing leaching fractions (and nutrient loss) to minimal amounts

Sensorweb: Local Set-Point Irrigation

Augments Scheduling and Micro-pulse tools with soil moisture sensor feedback: irrigation is disabled with set-point is exceeded

Dogwood Monitoring vs. Control (Lea-Cox)

Water Use: April – October, 2012

Irrigation Method	Total Water Use (Gals / Row)	Average Water Application (Gals/ Tree /Day)	Av. Efficiency (Timed vs. Control)	Water Savings (Control vs. Timed)
Grower: Timed, Cyclic	28,334	0.922	0.371	2.69
Sensor: Setpoint Control	10,521	0.342		

United States National Institute
Department of of Food
Agriculture and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

WSU Sunrise Orchard

Auvil Vantage Orchard (WA)

PSU FREC Orchard

Thanks CASC and WTFRC

National Institution of Food and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

Conclusion

- Wireless sensing and control is available, reliable, and expensive
- Flexible system easily retrofitted to existing infrastructure
- These technologies can be used to push research into production environments
- Potential uses in orchards
 - Irrigation control
 - Disease prediction
 - Pest monitoring and prediction
 - Plant stress detection

National Institute of Food and Agriculture

USDA-NIFA-SCRI Award no. 2009-51181-05768

Thank You

Questions?

This work is graciously supported by USDA-NIFA-SCRI 2009-51181-05768

And Thanks to all MINDS partners!

For more information visit us online at http://smart-farms.net/

