# Update on new cherry rootstock possibilities from Michigan State Univ.

#### Amy lezzoni Department of Horticulture Michigan State University



IFTA Conference, February 2013

## Outline

- MSU's candidate cherry rootstocks with sweet cherry scions
- MSU's candidate cherry rootstocks with Montmorency scion
- Pre-commercialization activities for the MSU candidate cherry rootstocks
- What about Armillaria resistant rootstocks?

### Extensive cherry germplasm was collected for the MSU program



# Select sweet cherry rootstock candidates from MSU's cherry germplasm collection

### **Objective**

Identify dwarfing precocious rootstocks that have the potential to increase the profitability of cherry production.

The majority of the funding was provided by the Wash. Tree Fruit Research Commission & the Oregon Sweet Cherry Commission

### From 1997-2001, 100's of seedlings were tested. 93 were selected & planted with Hedelfingen scion in a test block at MSU



<u>Criteria used to chose selections</u>: tree health & pedigree

<u>Tests used to eliminate selections</u>: rooting of softwood cuttings, PDV & PNRSV hypersensitivity



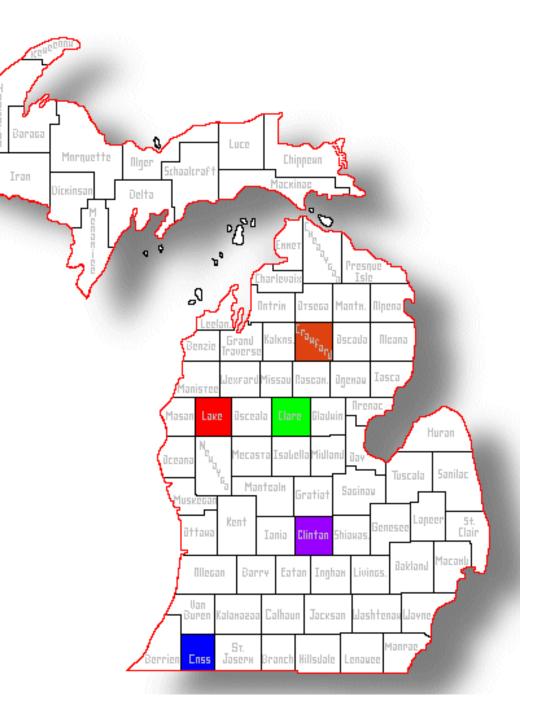
Dr. Hannah Schmidt, codeveloper of the Gisela® series rootstocks, visited MSU in 1997.

### Between 1997-2001, these 93 selections that were free of PDV & PNRSV, were also established in a "mother block" at MSU



The mother block has served as the maintenance plot for the rootstock germplasm.

# First rootstock selections were made from results from the Mich. plot


- Original grafted trees of the MSU candidate rootstocks were planted at MSU's Clarksville Research Center from 2001 to 2004.
- A set of 11 potential candidate rootstocks was selected in 2007.



The cherry rootstocks chosen for the next testing phase were named after Michigan counties.

Ontannsan

Gapebic



### The plot in Prosser, Wash. WSU – Roza Research Station

264 trees of the test rootstock selections grown at Willow Drive Nursery were planted at the WSU-Prosser Roza Farm in Spring 2009.

Liner production at MSU

WSU – Roza plot





### The plot in Prosser, Wash. WSU – Roza Research Station

### ACKNOWLEDGEMENT

### Plot oversight & data collection

- Matt Whiting (WSU)
- Tom Auvil (WTFRC)

## Four of the MSU rootstock candidates looked promising (WSU-Prosser, Spring 2011, trees planted 2009)

Gi6







CLARE





CLINTON



LAKE

## Based on year 2012 evaluations of Bing flowering and fruiting, 5 of the MSU rootstocks look promising.

Gi5

CASS

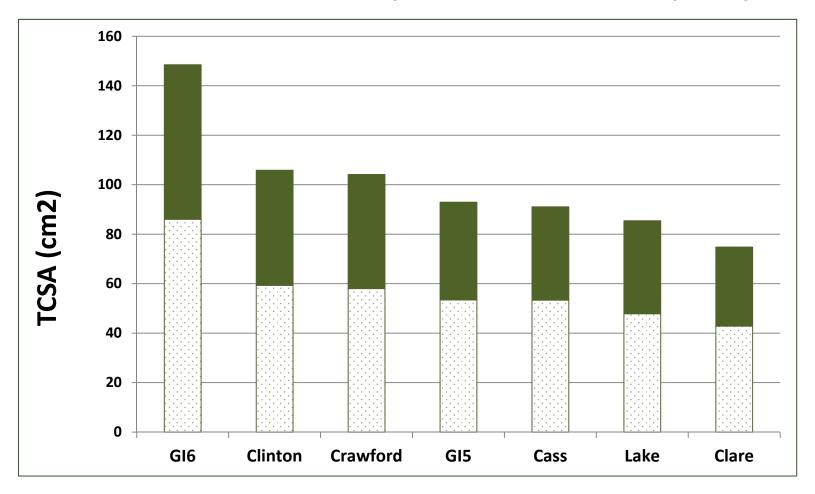
**CLARE** 





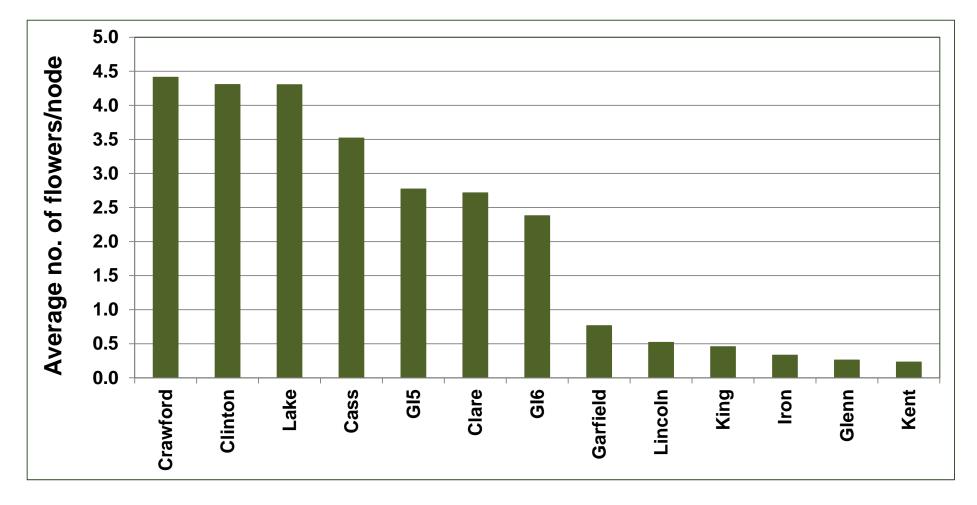





**CLINTON** 

LAKE

CRAWFORD


### Trunk cross sectional area (TCSA; cm<sup>2</sup>) of 5 MSU rootstock candidates, Gi 5, and Gi 6

The top bars indicate mean TCSA recorded on 9 July 2012. The bottom bar is the mean TCSA measurement on 28 September 2011. Therefore, the green bar indicates the TCSA increase during the first part of the 2012 growing season.



### 2012 flowering data

## Five MSU rootstocks had more flowers per node than Gi6



# Fruitlets were thinned by removing every other fruit on May 25, 2012

**Bing/GI6 before thinning** 

**Bing/GI6 after thinning** 



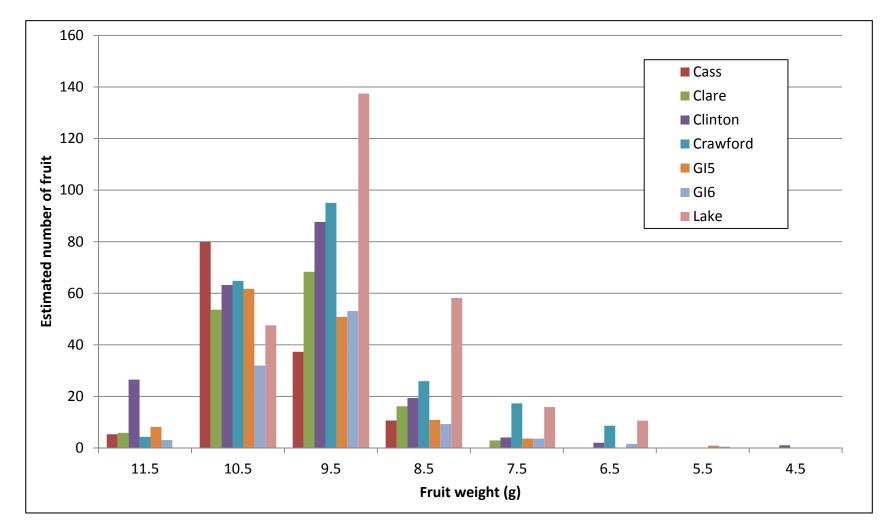
**Bing/Clinton before thinning** 

**Bing/Clinton after thinning** 



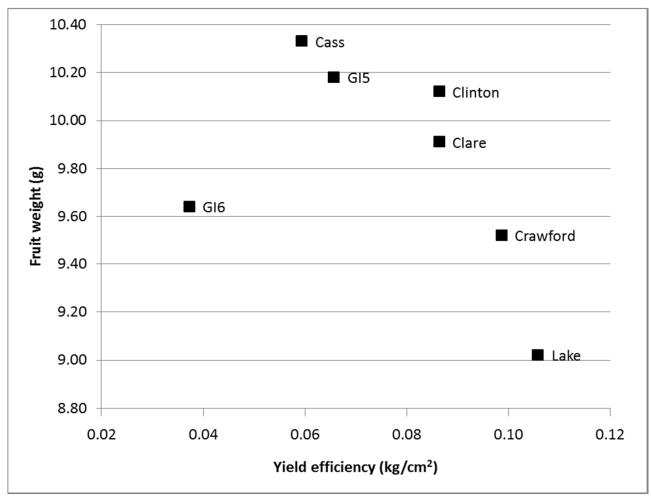
# 2012 harvest of the WSU-Roza plot & fruit evaluation at the WTFRC Wenatchee lab



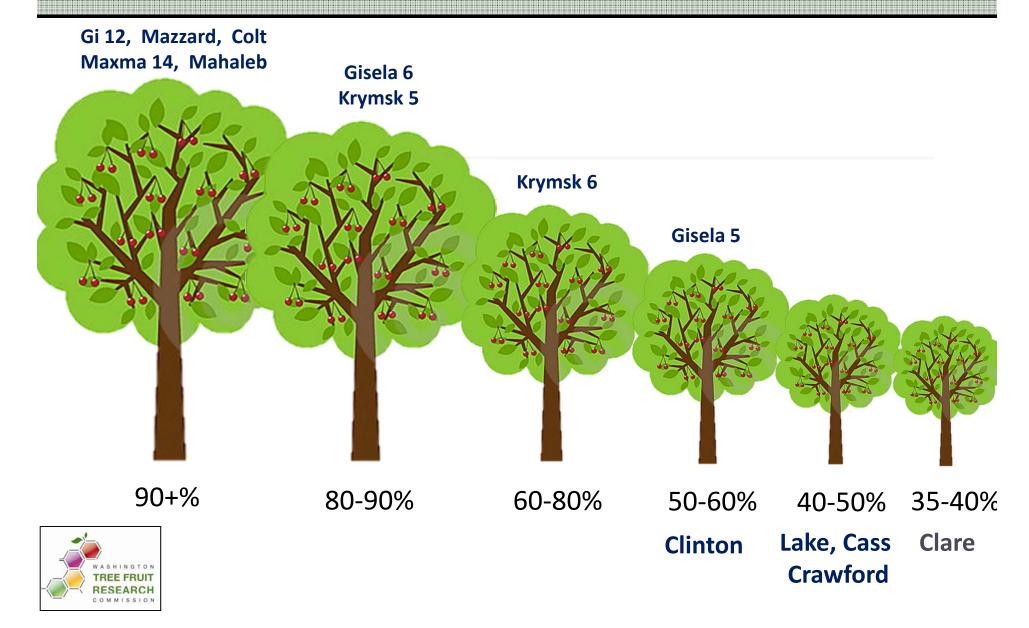








### 2012 fruit data

Fruit weight distribution for MSU rootstocks and Gi5 and Gi6




### 2012 fruit data

Average yield efficiency and fruit weight for MSU rootstocks and Gi5 and Gi6



### Relative tree sizes for 9 commercial cherry rootstocks & the 5 MSU candidate cherry rootstocks



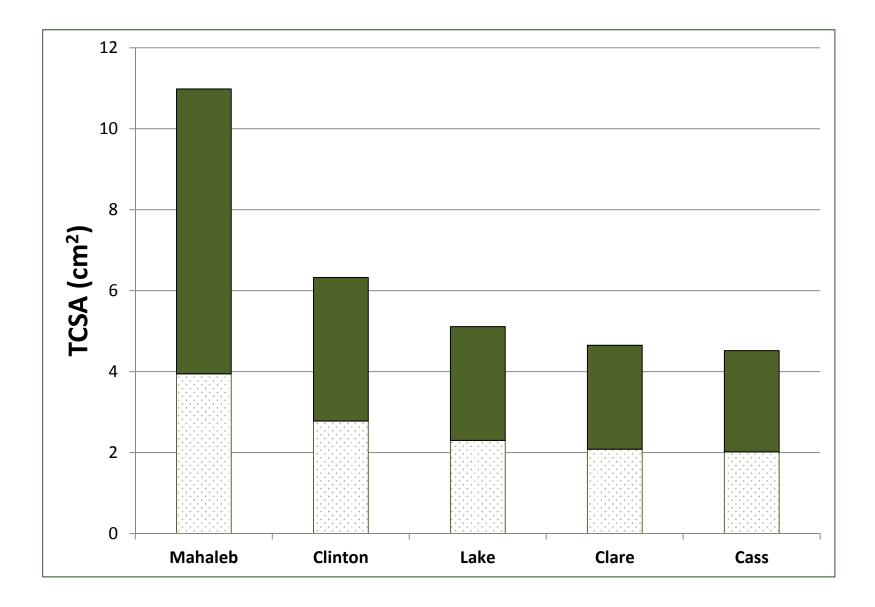
### Outline

- MSU's candidate cherry rootstocks with sweet cherry scions
- MSU's candidate cherry rootstocks with Montmorency scion
- Pre-commercialization activities for the MSU candidate cherry rootstocks
- What about Armillaria resistant rootstocks?

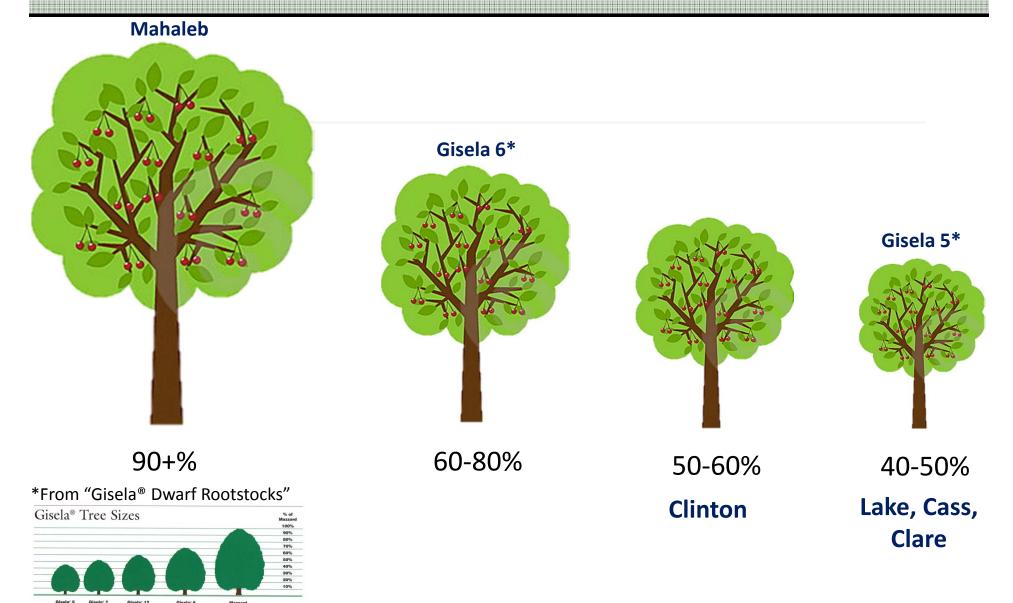
## Tree production for the Michigan plantings: Liner & tree production at Duarte Nursery & Willow Drive Nursery

**Duarte Nursery:** 

# Tissue culture to greenhouse liner production




### Montmorency on 9 MSU candidate rootstocks planted in Spring 2011 at MSU's NWMHRS




Control = mahaleb rootstock. Standard tree spacing. Photo taken on August 20, 2012

### Trunk cross sectional area (TCSA; cm<sup>2</sup>) of 'Montmorency' trees, planted at the NWMHRS



# Relative tree sizes based on trunk cross sectional area (TCSA; cm<sup>2</sup>) of 'Montmorency' trees, NWMHRS



## Number of MSU candidate cherry rootstocks in the over the row plot at the NWHRS (planted 2011)

- Montmorency/CASS69Montmorency/CLINTON59Montmorency/LAKE32
- Montmorency/CLARE 21



### Outline

- MSU's candidate cherry rootstocks with sweet cherry scions
- MSU's candidate cherry rootstocks with Montmorency scion
- Pre-commercialization activities for the MSU candidate cherry rootstocks
- What about Armillaria resistant rootstocks?

### Preventing future problems with rootstock availability & affordability

Put together a liner pipeline ahead of time so liner availability and tree cost are not future roadblocks.

<u>Strategy – Get virus certified and genetically verified rootstock material in the</u> <u>hands of liner nurseries as soon as possible</u>.

Virus certification was done at the National Clean Plant Network – Fruit Trees



Genetic verification is done in my MSU lab.

| Cass RI | Cass R2 | Cass R3 | Cass – MSU m.b. | Clare R1 | Clare R2 | Clare R3 | Clare – MSU m.b. | Clinton R1 | Clinton R2 | Clinton R3 | Clinton – MSU m.b. | Glenn R2 | Glenn R3 | Glenn – MSU m.b. | King R1 | King R2 | King R3 | King-MSU m.b. | Lake R1 | Lake R2 | Lake R3 | Lake – MSU m.b. | GI6 |
|---------|---------|---------|-----------------|----------|----------|----------|------------------|------------|------------|------------|--------------------|----------|----------|------------------|---------|---------|---------|---------------|---------|---------|---------|-----------------|-----|
|         |         | 111     |                 | =        |          | =        | =                | =          | Ξ          | =          | =                  | -        |          | -                |         | -       |         | _             | -       | =       | = :     | =.              |     |

# Rootstock distribution to 7 liner nurseries was accelerated to:

- Provide a mechanism for generating liners for future trials
- Give the nurseries an opportunity to gain experience propagating these rootstocks & making finished trees
- Begin to establish virus certified and genetically verified stock plants in case of commercialization

#### Nurseries:

- Cameron Nursery, Eltopia, Wash.
- Copenhaven Farms, Gaston, Ore.
- Duarte Nursery, Hughson, Calif.
- North American Plants, Lafayette, Ore.
- Protree Nurseries, Brentwood, Calif.
- Teak Nursery, Orondo, Wash.
- Willamette Nursery, Canby, Ore.



Amy lezzoni and Yongjian Chang

### A source of <u>virus-certified</u> & <u>genetically-verified</u> liners for future trials and potential commercialization is being provided:

#### \* = LAKE, CLARE, CLINTON (2011); $\sqrt{}$ = CASS (2012)

- \*,  $\checkmark$  Cameron Nursery, Eltopia, Wash. (Todd Cameron)
- Copenhaven Farms, Gaston, Ore. (Christopher Dolby)
- \*,  $\sqrt{-}$  Duarte Nursery, Hughson, Calif. (John Duarte)
- \*,  $\sqrt{-}$  North American Plants, Lafayette, Ore. (Yongjian Chang)
- Protree Nurseries, Brentwood, Calif. (Richard Chavez)
- \*,  $\sqrt{-1}$  Teak Nursery, Orondo, Wash. (Tye Fleming & Todd Erickson)
- Willamette Nursery, Canby, Ore. (Devin Cooper)



Budwood of CRAWFORD was sent to the NCPN-FT in fall 2012

2012-3 outcomes from this distribution:

- Knowledge of horticultural aspects of liner production
- Sufficient liners for the next rootstock trials



### **Current Activities**

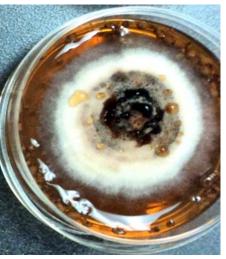
## Liners of CASS, CLARE, LAKE, CLINTON, & eventually CRAWFORD are being increased to produce liners for future trials.



- MSU's candidate cherry rootstocks with sweet cherry scions
- MSU's candidate cherry rootstocks with Montmorency scion
- Pre-commercialization activities for the MSU candidate cherry rootstocks
- What about Armillaria resistant rootstocks?

### What about Armillaria resistant rootstocks?

Are there any existing cherry rootstocks that are resistant to *Armillaria*?


A source of resistance to *Armillaria* was identified by Dr. Hammerschmidt and his group at MSU.

This was initially identified based on good performance in the *Armillaria* plot established adjacent to the North West Station.

 P. maackii is tolerant to Armillaria – images of Armillaria fungal growth on bark segments of P. mahaleb and P. maackii (Courtesy of Ray Hammerschmidt and Linzi Kaniszewski)

#### P. mahaleb

Mature tissue



#### Periderm



#### P. maackii





*Prunus maackii* tree in front of the MSU Law School. Flowers were emasculated and pollinated as part of a project to breed *Armillaria* resistant cherry rootstocks.



### Armillaria – seed from crosses done in April 2012





### Number of hybrid seedlings obtained with *P. maackii* as the mother parent

Cross combinations and number of seeds harvested from *P. maackii* crosses used to breed for *Armillaria* resistance.

| Cross                              | Number of seeds |
|------------------------------------|-----------------|
| <i>P. maackii</i> × Clare          | 16              |
| <i>P. maackii</i> × P12(2)         | 3               |
| <i>P. maackii</i> × NY54 (mazzard) | 5               |
| <i>P. maackii</i> × Montmorency    | 37              |
| Montmorency × <i>P. maackii</i>    | 3               |

### Summary

- 5 MSU candidate cherry rootstocks have been identified that increase precocity and reduce tree size in sweet cherry and likely in tart cherry also
- The next step will be to determine if these MSU candidate cherry rootstocks can be used in new production systems resulting in increased profitability
- A source of Armillaria resistance has been identified and is being used in breeding

### Acknowledgements

<u>CONTRIBUTORS</u> Audrey Sebolt (MSU) Tom Auvil (WTFRC) & Matt Whiting (WSU) Nikki Rothwell, Karen Powers, Erin Lizotte and Bill Klein (NWMHRS) Ray Hammerschmidt & Linzi Kaniszewski (MSU)

#### **COLLABORATING NURSERIES**

Meadow Lake Nursery, Duarte Nursery, Willow Drive Nursery, plus the liner nurseries

<u>FUNDING</u> MSU AgBioResearch Michigan Cherry Committee NW Horticultural Foundation Washington Tree Fruit Research Commission Oregon Sweet Cherry Commission